Problem 1.51

For Theorem 1, show that $(\mathrm{d}) \Rightarrow(\mathrm{a}),(\mathrm{a}) \Rightarrow(\mathrm{c}),(\mathrm{c}) \Rightarrow(\mathrm{b}),(\mathrm{b}) \Rightarrow(\mathrm{c})$, and $(\mathrm{c}) \Rightarrow(\mathrm{a})$.

Solution

Theorem 1 says that the following conditions are equivalent.
(a) $\nabla \times \mathbf{F}=\mathbf{0}$ everywhere.
(b) $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d \mathbf{l}$ is independent of path for any given end points.
(c) $\oint \mathbf{F} \cdot d \mathbf{l}=0$ for any closed loop.
(d) \mathbf{F} is the gradient of some scalar function: $\mathbf{F}=-\nabla V$.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$
Assume that \mathbf{F} is the gradient of some scalar function: $\mathbf{F}=-\nabla V$. Show that $\nabla \times \mathbf{F}=\mathbf{0}$.

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\nabla \times(-\nabla V) \\
& =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} \frac{\partial}{\partial x_{i}}\right) \times\left[-\left(\sum_{j=1}^{3} \boldsymbol{\delta}_{j} \frac{\partial}{\partial x_{j}}\right) V\right] \\
& =-\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} \frac{\partial}{\partial x_{i}}\right) \times\left(\sum_{j=1}^{3} \boldsymbol{\delta}_{j} \frac{\partial V}{\partial x_{j}}\right) \\
& =-\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\boldsymbol{\delta}_{i} \times \boldsymbol{\delta}_{j}\right) \frac{\partial}{\partial x_{i}}\left(\frac{\partial V}{\partial x_{j}}\right) \\
& =-\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{i j k} \frac{\partial}{\partial x_{i}}\left(\frac{\partial V}{\partial x_{j}}\right) \\
& \left.=-\sum_{j=1}^{3} \sum_{i=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{j i k} \frac{\partial}{\partial x_{j}}\left(\frac{\partial V}{\partial x_{i}}\right) \quad \text { (let } i \text { be } j \text { and let } j \text { be } i\right) \\
& =-\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{j i k} \frac{\partial}{\partial x_{j}}\left(\frac{\partial V}{\partial x_{i}}\right) \quad \text { (limits are constant, so interchange sums) } \\
& =-\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{j i k} \frac{\partial}{\partial x_{i}}\left(\frac{\partial V}{\partial x_{j}}\right) \quad \text { (use Clairaut's theorem) } \\
& =-\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k}\left(-\varepsilon_{i j k}\right) \frac{\partial}{\partial x_{i}}\left(\frac{\partial V}{\partial x_{j}}\right)=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{i j k} \frac{\partial}{\partial x_{i}}\left(\frac{\partial V}{\partial x_{j}}\right)=\mathbf{0}
\end{aligned}
$$

$(\mathrm{a}) \Rightarrow(\mathrm{c})$

Assume that $\nabla \times \mathbf{F}=\mathbf{0}$ everywhere and show that $\oint \mathbf{F} \cdot d \mathbf{l}=0$ for any closed loop.

$$
\nabla \times \mathbf{F}=\mathbf{0}
$$

Integrate both sides over any open surface S with boundary line, bdy S.

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{S} \mathbf{0} \cdot d \mathbf{S}
$$

Use Stokes's theorem on the left and evaluate the integral on the right.

$$
\oint_{\text {bdy } S} \mathbf{F} \cdot d \mathbf{l}=0
$$

$(\mathrm{c}) \Rightarrow(\mathrm{b})$
Assume that $\oint \mathbf{F} \cdot d \mathbf{l}=0$ and show that $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d \mathbf{l}$ is independent of path for any given end points.

$$
\oint_{\text {bdy } S} \mathbf{F} \cdot d \mathbf{l}=0
$$

By the fundamental theorem for gradients, there exists a potential function T such that $\mathbf{F}=\nabla T$. Gradients are known to be conservative vector fields. Therefore,

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d \mathbf{l}=\int_{\mathbf{a}}^{\mathbf{b}} \nabla T \cdot d \mathbf{l}
$$

is independent of path for any given end points.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$
Assume that

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d \mathbf{l}
$$

is independent of path for any given end points. That means \mathbf{F} is a conservative vector field. Integrate \mathbf{F} from \mathbf{a} to \mathbf{b} and then back to \mathbf{a}.

$$
\begin{aligned}
\oint \mathbf{F} \cdot d \mathbf{l} & =\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{F} \cdot d \mathbf{l} \\
& =\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d \mathbf{l}+\int_{\mathbf{b}}^{\mathbf{a}} \mathbf{F} \cdot d \mathbf{l} \\
& =\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d \mathbf{l}-\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d \mathbf{l} \\
& =0
\end{aligned}
$$

$(\mathrm{c}) \Rightarrow(\mathrm{a})$
Assume that

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{l}=0
$$

for any closed loop C. Apply Stokes's theorem to turn this line integral into a surface integral.

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=0
$$

Since this is true for any surface $S, \nabla \times \mathbf{F}=\mathbf{0}$ everywhere.

